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Abstract. We describe aspects of the formalisation and verification of
the L4 µ-kernel. Starting from an abstract model of the virtual memory
subsystem in L4, we prove safety properties about this model, and then
refine the page table abstraction, one part of the model, towards C source
code. All formalisations and proofs have been carried out in the theorem
prover Isabelle.

1 Introduction

L4 is a second generation microkernel based on the principles of minimality, flex-
ibility, and efficiency [12]. It provides the traditional advantages of the micro-
kernel approach to system structure, namely improved reliability and flexibility,
while overcoming the performance limitations of the previous generation of mi-
crokernels. With implementation sizes in the order of 10,000 lines of C++ and
assembler code it is about an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux.

The operating system (OS) is clearly one of the most fundamental com-
ponents of non-trivial systems. The correctness and reliability of the system
critically depends on the OS. In terms of security, the OS is part of the trusted
computing base, that is, the hardware and software necessary for the enforcement
of a system’s security policy. It has been repeatedly demonstrated that current
operating systems fail at these requirements of correctness, reliability, and secu-
rity. Microkernels address this problem by applying the principles of minimality
and least privilege to operating system architecture. However, the success of this
approach is still predicated on the microkernel being designed and implemented
correctly. We can address this by formally modelling and verifying it.

The design of L4 is not only geared towards flexibility and reliability, but
also is of a size which makes formalisation and verification feasible. Compared
to other operating system kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still considered a very large and
complex system. Our methodology for solving this verification problem is shown
in Fig. 1. It is a classic refinement strategy. We start out from an abstract model
of the kernel that is phrased in terms of user concepts as they are explained in
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Fig. 1. Overview

the L4 reference manual [10]. This is the level at which most of the safety and
security theorems will be shown. We then formally refine this abstract model
in multiple property preserving steps towards the implementation of L4. The
last step consists of verifying that the C++ and assembler source code of the
kernel correctly implements the most concrete refinement level. At the end of
this process, we will have shown that the kernel source code satisfies the safety
and security properties we have proved about the abstract model.

In this paper we give an overview of some of the steps in this refinement
process. L4 provides three main abstractions: threads, address spaces, and inter-
process communication (IPC). We have chosen to start with address spaces. This
is supported by the virtual memory subsystem of the kernel and is fundamental
for implementing separation and security policies on top of L4. We first show an
abstract model of address spaces, describe the framework in which the refinement
process proceeds and then concentrate on the implementation of one particular
operation of the abstract model. This operation is implemented in the Kernel
using page tables of which we again first show an abstract view and then provide
an implementation of some of its operations in a programming language that in
its level of abstraction is close to C.

Earlier work on operating system kernel formalisation and verification in-
cludes PSOS [15] and UCLA Secure Unix [20]. The focus of this work was on
capability-based security kernels, allowing security policies such as multi-level
security to be enforced. These efforts were hampered by the lack of mechanisa-
tion and appropriate tools available at the time and so while the designs were
formalised, the full verification proofs were not practical. Later work, such as
KIT [2], describes verification of properties such as process isolation to source
or object level but with kernels providing far simpler and less general abstrac-
tions than modern microkernels. There exists some work in the literature on
the modelling of microkernels at the abstract level with varying degrees of com-
pleteness. Bevier and Smith [3] specify legal Mach states and describe Mach
system calls using temporal logic. Shapiro and Weber [17] give an operational
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semantics for EROS and prove a confinement security policy. Our work differs
in that we plan to formally relate our model to the implementation. Some case
studies [6, 4, 19] appear in the literature in which the IPC and scheduling sub-
systems of microkernels have been described in PROMELA and verified with
the SPIN model checker. These abstractions were not necessarily sound, having
been manually constructed from the implementations, and so while useful for
discovering concurrency bugs do not provide guarantees of correctness. Finally,
the VFiasco project, working with the Fiasco implementation of L4, has pub-
lished exploratory work on the issues involved in C++ verification at the source
level [7].

After introducing our notation in the following section, we first present the
abstract conceptual model of virtual memory in L4 in section 3, and then show
parts of the refinement of the memory lookup operation in this model towards
a page table implementation in section 4.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t:: τ means that HOL term t has HOL type τ .

The cons of an element x to a list xs is written x # xs, and [] is the empty
list. Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and
snd :: ′a × ′b ⇒ ′b. We identify tuples with pairs nested to the right: (a, b,
c) is identical to (a, (b, c)) and ′a × ′b × ′c is identical to ′a × ( ′b × ′c).

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. For succinctness we write bac instead
of Some a.

Function update is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b.
Partial functions are modelled as functions of type ′a ⇒ ′b option, where

None represents undefinedness and f x = byc means x is mapped to y. We call
such functions maps, and abbreviate f (x :=byc) to f (x 7→ y). The map λx . None
is written empty, and empty(. . .), where . . . are updates, abbreviates to [. . .]. For
example, empty(x 7→y) becomes [x 7→ y ].

Implication is denoted by =⇒ and [[ A1; . . .; An ]] =⇒ A abbreviates A1 =⇒
(. . . =⇒ (An =⇒ A). . .).

Records in Isabelle [14], as familiar from programming languages, are essen-
tially tuples with named fields. The type declaration

record point =
X :: nat
Y :: nat
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creates a new record type point with two components X and Y of type nat.
The notation (|X=0, Y =0|) stands for the element of type point that has both
components set to 0. Isabelle automatically creates two selector functions X ::
point ⇒ nat and Y :: point ⇒ nat such that, e.g. X (|X=0, Y =0|) = 0. Updating
field Y of a record p with value n is written p (|Y := n|). As for function update,
multiple record updates separated by comma are admitted.

3 Abstract Address Space Model

The virtual memory subsystem in L4 provides a flexible, hierarchical way of
manipulating the mapping from virtual to physical memory pages of address
spaces at user-level. We now present a formal model for address spaces. A first
description of this model has already appeared in [9]. For completeness, we repeat
parts of it in sections 3.1 and 3.2. The treatment of abstract datatypes in section
3.3 is updated to incorporate operations with output.

3.1 Address Spaces

Fig. 2 illustrates the concept of hierarchical mappings. Large boxes depict virtual
address spaces. The smaller boxes inside stand for virtual pages in the address
space. The rounded box at the bottom is the set of physical pages. The arrows
stand for direct mappings which connect pages in one address spaces to addresses
in (possibly) other address spaces. In well-behaved states, the transitive closure
of mappings always ends in physical pages. The example in Fig. 2 maps virtual
page v1 in space n1, as well as v2 in n2, and v4 in n4 to the physical page r1.

Fig. 2. Address Spaces

Formally, we use the types R for the physical pages (r1, r2, etc.), V for
virtual pages (v1, v2, etc.), and N for the names of address spaces (n1, n2, etc.).

A position in this picture is determined uniquely by either naming a virtual
page in a virtual address space, or by naming a physical page. We call these the
mappings M :
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datatype M = Virtual N V | Real R

An address space associates with each virtual page either a mapping, or
nothing (the nil page). We implement this in Isabelle by the option datatype:

types space = V ⇒ M option

The machine state is then a map from address space names to address spaces.
Not all names need to be associated with an address space, so we use option
again:

types state = N ⇒ space option

To relate these functions to the arrows in Fig. 2, we use the concept of paths.
The term s ` x ;1 y means that in state s there is a direct path from position
x to position y. There is a direct path from position Virtual n v to another
position y if in state s the address space with name n is defined and maps the
virtual page v to y. There can be no paths starting at physical pages. Formally,

s ` x ;1 y = (∃n v σ. x = Virtual n v ∧ s n = bσc ∧ σ v = byc)

We write ` ;+ for the transitive and ` ;∗ for the reflexive and
transitive closure of the direct path relation.

3.2 Operations

The L4 kernel exports the following basic operations on address spaces: unmap,
flush, map, and grant. The former two operations remove mappings, the latter
two create or move mappings. We explain and define them below.

Fig. 3 illustrates the unmap n v operation. It is the most fundamental of the
operations above. We say a space n unmaps v if it removes all mappings that
depend on Virtual n v, or in terms of paths if it removes all edges leading to
Virtual n v.

Fig. 3. The unmap operation (before and after)

To implement this, we use a function clear that, given name n, page v, and
address space σ in a state s, returns σ with all v ′ leading to Virtual n v mapped
to None.
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clear :: N ⇒ V ⇒ state ⇒ space ⇒ space
clear n v s σ ≡
λv ′. case σ v ′ of None ⇒ None
| bmc ⇒ if s ` m ;∗ Virtual n v then None else bmc

An unmap n v in state s then produces a new state in which each address
space is cleared of all paths leading to Virtual n v.

unmap :: N ⇒ V ⇒ state ⇒ state
unmap n v s ≡ λn ′. case s n ′ of None ⇒ None | bσc ⇒ bclear n v s σc

For updating a space with name n at page v with a new mapping m we write
n,v ← m, where m may be None.

n,v ← m ≡ λs. s(n := case s n of None ⇒ None | bσc ⇒ bσ(v := m)c)

With this, the flush operation is simply unmap followed by setting n,v to
None.

flush :: N ⇒ V ⇒ state ⇒ state
flush n v ≡ n,v ← None ◦ unmap n v

The remaining two operations map and grant establish new mappings in the
receiving address space. To ensure a consistent new state, this new mapping
must ultimately be connected to a physical page. We call a mapping m valid in
state s (written s ` m) if it is a physical page, or if it is of the form Virtual n v
and is the source of some direct path. We show later that in all reachable states
of the system, this definition is equivalent to saying that the mapping leads to
a physical page.

s ` m ≡ case m of Virtual n v ⇒ ∃ x . s ` m ;1 x | Real r ⇒ True

Before the kernel establishes a new value, the destination is always flushed.
This may invalidate the source. The operation only continues if the source is
still valid, otherwise it stops. We capture this behaviour in a slightly modified
update notation ↼:

n,v ↼ m ≡ λs. let s0 = flush n v s in (if s0 ` m then n,v ← bmc else id) s0

Fig. 4. The map operation (before and after)

In L4, an address space n can map a page v to another space n ′ at page v ′.
Again, the operation only goes ahead, if the mapping Virtual n v is valid:
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map :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
map n v n ′ v ′ s ≡ if ¬ s ` Virtual n v then s else (n ′,v ′ ↼ Virtual n v) s

Fig. 4 shows an example for the map operation. Address space n maps page
v to n ′ at v ′. The destination n ′,v ′ is first flushed and then updated with the
new mapping Virtual n v.

A space n can also grant a page v to v ′ in n ′. As illustrated in Fig. 5, granting
updates n ′,v ′ to the value of n at v and flushes the source n,v.

Fig. 5. The grant operation (before and after)

grant :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
grant n v n ′ v ′ s ≡
if ¬ s ` Virtual n v then s
else let bσc = s n; bmc = σ v in (flush n v ◦ n ′,v ′ ↼ m) s

This concludes the kernel operations on address spaces. We have also mod-
elled the hardware memory management unit (MMU). On this abstract level, all
the MMU does is lookup: it determines which physical page needs to be accessed
for each virtual page v and address space n. We write s ` n,v � brc if lookup
of page v in the address space with name n in state s yields the physical page
r. As we already have the concepts of paths, this is easily described formally:

s ` n,v � brc = s ` Virtual n v ;+ Real r
s ` n,v � None = (∃σ. s n = bσc ∧ σ v = None) ∨ s n = None

The model in this section is based on an earlier pen-and-paper formalisation
of L4 address spaces by Liedtke [12]. Formalising it in Isabelle/HOL eliminated
problems like the mutual recursive definition of the update and flush functions
being not well-founded. It would be well-founded—at least on reachable kernel
states—if the model had the property that no loops can be constructed in ad-
dress spaces. This is not true in the original model. The operation map n v n ′ v ′

followed by grant n ′ v ′ n v is a counter example. We have introduced the formal
concept of valid mappings to establish this no-loops property as well as the fact
that any page that is mapped at all is mapped to a physical address.

3.3 An abstract data type for virtual memory

In the following we phrase the model of virtual memory and of the MMU hard-
ware in terms of an abstract data type consisting of the type state and the
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operations detailed above. This data type (not to be confused with Isabelle’s
keyword datatype) is used implicitly by any user-level program. Even if the
program does not invoke any mapping operations directly, the CPU performs a
lookup operation with every memory access.

Putting the operations in terms of an abstract data type enables us to formu-
late refinement explicitly: if the data type of the abstract address spaces model
is replaced with the data type of more concrete models (and finally the imple-
mentation) the program will not have any observable differences in behaviour.

Formally we define an abstract data type as a record consisting of an initial
set of states and of a transition relation that models execution with return values
of type ′o:

record ( ′a, ′j , ′o) DataType =
Init :: ′a set
Step :: ′j → ( ′a × ′a × ′o) set

For our virtual memory model, the operations are enumerated in the index type
VMIndex :

datatype VMIndex = create N | unmap N V | flush N V | map N V N V
| grant N V N V | lookup N V

The abstract model A in terms of a (state, VMIndex , R option) DataType is
then:

Init A = {[σ0 7→ σ] |σ. inj p σ ∧ ran σ ⊆ range Real}
Step A (lookup n v) = {(s, s ′, r) | s = s ′ ∧ s ` n,v � r}
Step A (create n) = {(s, s ′, r) | r = None ∧ s n = None ∧ s ′ = s(n 7→ empty)}
Step A (unmap n v) = {(s, s ′, r) | r = None ∧ s n 6= None ∧ s ′ = unmap n v s}
Step A (flush n v) = {(s, s ′, r) | r = None ∧ s n 6= None ∧ s ′ = flush n v s}
Step A (map n v n ′ v ′) =
{(s, s ′, r) | r = None ∧ s n 6= None ∧ s n ′ 6= None ∧ s ′ = map n v n ′ v ′ s}
Step A (grant n v n ′ v ′) =
{(s, s ′, r) | r = None ∧ s n 6= None ∧ s n ′ 6= None ∧ s ′ = grant n v n ′ v ′ s}

The boot process creates an address space σ0 that is an injective mapping
from virtual to physical pages. The functions ran and range return the codomain
of a function, where ran works on functions ′a ⇒ ′b option and range on total
functions. Injectivity is constrained to the part of the function that returns bxc:
inj p f ≡ inj-on f {x | ∃ y . f x = byc}.

The lookup operation is the only operation that returns a value. All other
operations return None.

Creating a new address space n is modelled by updating the state s at n
with the predefined map empty. The other mapping operations have been de-
fined above. All of them require the address spaces they operate on to exist.
This condition is ensured automatically in the current L4 implementation as the
address spaces are determined by sender and receiver of an IPC operation.

The correctness of the implementation with respect to the abstraction is
established by showing the concrete model to be a refinement of the abstract
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model. Here refinement is taken to mean data refinement [5] and we use the proof
technique of simulation. Simulation between an abstract ( ′a, ′j , ′o) DataType
and a concrete ( ′c, ′j , ′o) DataType is formalized as follows.

The step relations for each operation are of type ( ′a × ′a × ′o) set. It is
convenient to have a relation for these operations of type ( ′a × ′o) × ( ′a ×
′o) below, so we introduce the function up. This gives the semantics of the
operations on the state space ′a × ′o. Since the value of the ′o component in
the pre-state has no effect on the semantics of the operations in an ADT it can
be left unrestricted.

up r ≡ {((a, i), b, k) | (a, b, k) ∈ r}

The type of the abstraction relation r is ( ′a × ′c) set. ido lifts this to ( ′a × ′o)
× ( ′c × ′o).

ido r ≡ {((s, k), s ′, k ′) | k = k ′ ∧ (s, s ′) ∈ r}

A relation c is an L-subset of a relation a under the relation r if the following
holds, where a ; b is relational compososition of a and b.

r ` c ⊆L a ≡ r ; c ⊆ a ; r

InitA

InitC
R

StepA(j)

StepC(j)

RR

Fig. 6. Simulation

A forward simulation exists if the diagrams in Figure 6 commute. That is, there
exists a relation such that the initial states of the concrete model are a subset of
those in the abstract model under the relational image of the lifted abstraction
relation, and if for each step operation the concrete step is an L-subset of the
abstract step relation under r.

Lr r C A ≡
let ro = ido r
in Init C × UNIV ⊆ ro ‘‘ (Init A × UNIV ) ∧

(∀ j . ro ` up (Step C j ) ⊆L up (Step A j ))
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We write C ≤F A when concrete data type C simulates abstract data type
A:

C ≤F A ≡ ∃ r . Lr r C A

3.4 Properties

We have shown a number of safety properties about the abstract address space
model. They are formulated as invariants over the abstract datatype. A set of
states I is an invariant if it contains all initial states and if execution of any
operation in a state of I again leads to a state in I. We write D |= I when I is
an invariant of data type D.

Theorem 1. There are no loops in the address space structure.

A |= {s | ∀ x . ¬ s ` x ;+ x}

The proof is by case distinction on the operations and proceeds by observing
how each operation changes existing paths. Theorem 1 is significant for im-
plementing the lookup function efficiently. It also ensures that internal kernel
functions can walk the corresponding data structures naively. Together with the
properties below it says that address spaces always have a tree structure.

Theorem 2. All valid pages translate to physical pages.

A |= {s | ∀ x . s ` x −→ (∃ r . s ` x ;∗ Real r)}

The proof is again by case distinction on the operations. Together with the
following theorem we obtain that address lookup is a total function on data
type A.

Theorem 3. The lookup relation is a function.

[[s ` n,v � r ; s ` n,v � r ′]] =⇒ r = r ′

This theorem follows directly from the fact that paths are built on functions.
That address lookup is a total function may sound like merely a nice formal

property, but it is quite literally an important safety property in reality. Un-
defined behaviour, possibly physical damage, may result if two conflicting TLB
entries are present for the same virtual address. The current ARM reference
manual [1, p. B3-26] explicitly warns against this scenario.

3.5 Simplifications and Assumptions

The current model makes the following simplifications and assumptions.

– The L4Ka::Pistachio API stipulates two regions per address space that are
shared between the user and kernel, the kernel interface page (KIP) and
user thread control blocks (UTCBs). These should have a valid translation
from virtual to physical memory pages, but can not be manipulated by the
mapping operations.
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– The mapping operations in L4 work on regions of the address space rather
than individual pages. These regions, known as flexpages, are 2kb, k ≥ 0
aligned and sized where b is the minimum page size on the architecture. This
introduces significant complexity in the implementation and has a number of
boundary conditions of interest, so adding this to the abstract model would
be beneficial. At the same time, it is possible to create systems using L4 that
only use the minimum flexpage size so this omission does not pose a serious
limitation to the utility of the model.

– map and grant are implemented through the IPC primitives in L4 and involve
an agreement on the region to be transferred between sender and receiver.
This can be added when the IPC abstraction is modelled.

– Flexpages also have associated read, write and execute access rights. At
present the model can be considered as providing an all or nothing view of
access rights.

– We assume that all of the mapping operations are atomic, which is the case in
the current non-preemptable implementation, and a single processor, hence
a sequential system.

4 Page Tables

The model in the previous section provides an abstract model of address spaces
in L4 but does not bear much resemblance to the kernel implementation. This
is not surprising since the kernel must provide an efficient realisation of the
mapping operations and the code supporting this executes under time and space
restrictions.

Below we consider the refinement of one component of the virtual memory
subsystem necessary for the implementation of address spaces. The models and
interfaces below are based on the existing page table implementation in the
L4Ka::Pistachio [11] kernel.

4.1 Abstract model

The implementation of address spaces is provided by the hardware and OS vir-
tual memory mechanisms. The lookup relation corresponds to the virtual-to-
physical mapping function provided by the MMU on the CPU. This translation
is carried out on every memory access and so is critical to system performance.
It is typically hidden in the processor pipeline by an associative cache, called
the translation-lookaside buffer (TLB). This holds a subset of mappings from
the page table data structure which is located in memory. The TLB caches page
table entries (PTEs), as in Figure 7 — a PTE for a page in the virtual ad-
dress space specifies the corresponding physical page, access rights, and other
page specific information, shown in Figure 8. On a TLB miss a hardware mech-
anism1 traverses the page table data structure to perform address translation.
1 On the ARM architecture. Other architectures might also rely on software mecha-

nisms to achieve the same goal.
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Page table (N)

TLBV PTE

Fig. 7. PTE lookup through the TLB

The design of page table implementations is influenced by the direct and indirect
performance costs of this operation.

Physical page number
0m-1n-1

CR W X V

Fig. 8. Page table entry (PTE)

OffsetVirtual page number
0m-1n-1

Fig. 9. Virtual address

While we treated virtual page numbers and virtual addresses interchangeably
in the previous section, this will no longer be sufficient when considering the
specifics of page table implementations, since modern TLBs usually support
multiple page sizes, called superpages [18], in order to improve the coverage of
the TLB; a single PTE (and TLB entry) can then cover large regions of the
address space. Hence many virtual pages may be associated with a single virtual
address. An n-bit virtual addresses can be considered as consisting of an (n−m)-
bit virtual page number and an m-bit offset, as in Figure 9, where 2m is in the
set of page sizes supported by the the architecture. Mappings are then from 2m
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Virtual
address 
space

Physical
address 
space

{r}
{r,w,x}

{w} {x}

Fig. 10. Mappings from virtual to physical pages

sized, aligned regions of the virtual address space to the physical address space,
shown in Figure 10.

Virtual addresses are modelled using a theory of fixed-width words in Isabelle,
where the word type is a quotient type with equivalence classes derived by taking
the natural numbers modulo the word size. The theory is imported from the
HOL4 system. We use the word32 type for virtual addresses, although nothing
should depend on this particular value for word size and the model and proofs
presented here should be the same for any size of virtual addresses.

types V = word32

The function page-bits ps gives the value of m for page size ps. We introduce the
type PTESize of which values are supported (super)page sizes.

consts page-bits :: PTESize ⇒ nat

The vpn for a virtual address is its virtual page number as a nat. The function
w2n converts from a value of type word32 to the corresponding nat. n2w does
the reverse.

vpn v ps ≡ w2n v div 2 ˆ page-bits ps

At a given page size, two virtual addresses with identical virtual page numbers
are of the same page.

page-equiv l v v ′ ≡ vpn v l = vpn v ′ l

page-set v ps gives the set of virtual addresses for the page of size ps containing
the virtual address v. Figure 11 gives two example page-sets for a virtual address
v with superpage sizes m0 and m1.

page-set v l ≡ {v ′ | page-equiv l v v ′}

We begin with the description of the state space for the abstract model by intro-
ducing several new types. We model page tables as function from N × V to a
pointer to a PTE stored in a heap. We choose to model explicitly at the abstract
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OffsetVirtual page number
0m0-1n-1

V

Virtual address
space

2m0

OffsetVirtual page number
0m1-1n-1

V

Virtual address
space

2m1

Fig. 11. Example page-sets

level indirection with respect to PTEs, based on the interface observed in the
L4Ka::Pistachio linear page table implementation. This allows for efficient im-
plementation of operations that modify PTEs since unnecessary traversal of the
page table can be avoided. The type of PTE pointers is PTEName. In addition,
a pointer type TreeListNodeName is introduced. The page table ADT is utilised
by the mapping database (MDB) that stores the map/grant relationships be-
tween address spaces as illustrated in section 3.1. In addition to the fields that
are usually present in a PTE, the MDB requires that each PTE has the cor-
responding virtual address and a pointer of type TreeListNodeName associated
with it.

An abstract PTE is modelled as a record type. Paddr contains the physical
page number for the page, R,W ,X specify the access rights for this mapping,
and Cached indicates whether the data accessed through this mapping may be
stored in the data or instruction caches. As part of the MDB required interface
we also conceptually associate the two additional fields MapNode and Vaddr
with the PTE as explained above.

record PTEa =
Paddr :: R
R :: bool
W :: bool
X :: bool
Cached :: bool
MapNode :: TreeListNodeName
Vaddr :: V

The state space is then a partial function from N × V to the PTE pointer for
the mapping and the size of the mapping, and a heap for PTEs. In addition, the
N field of PTState stores which address spaces are currently active (have been
created).
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types PageTable = N × V ⇒ (PTEName × PTESize) option
types PTEHeap = PTEName ⇒ PTEa

record PTState =
N :: N list
Heap :: PTEHeap
PageTable :: PageTable

The operations provided by the page table ADT and their return types are
enumerated in the following two type declarations.

datatype PTIndex = insert N V PTESize
| lookup N V
| getpaddr PTEName PTESize
| setpaddr PTEName R PTESize
| setlinknode PTEName TreeListNodeName V PTESize
| getmapnode PTEName V PTESize
| createspace

datatype PTResult = RInsert (PTEName × PTESize) option
| RLookup (PTEName × PTESize) option
| RGetPaddr R | RSetPaddr | RSetLinkNode
| RGetMapNode TreeListNodeName | RCreateSpace N

The ADT definition follows, with the semantics of these operations described
further below. The get and set operations for the physical page number (getpaddr
and setpaddr) are given, but omitted for the other fields (R,W ,X ,Cached) with
the exception of the last two, since they are identical in all but name.

Init P = {x | N x = [] ∧ PageTable x = empty}
Step P createspace = create-spacea

Step P (lookup n v) = lookupa n v
Step P (insert n v ps) = inserta n v ps
Step P (setpaddr p r ps) = set-paddra p r ps
Step P (getpaddr p ps) = get-paddra p ps
Step P (setlinknode p m v ps) = set-link-nodea p m v ps
Step P (getmapnode p v ps) = get-map-nodea p v ps

In the initial state there are no valid address spaces and hence no mappings.
Before mappings can be added, new address spaces need to be created. The

createspace operation picks and returns the name of the new address space non-
deterministically. It must be distinct from the name of any existing address
space.

create-spacea ≡
{(s, s ′, r) | ∃n. n /∈ set (N s) ∧ s ′ = s(|N := n # N s|) ∧ r = RCreateSpace n}

Lookup returns the PTE pointer and size of the mapping that contains v as-
suming a valid address space n is specified. The onus is on the caller to supply a
valid address space to avoid a potentially unnecessary check for validity on each
invocation of this operation.
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lookupa n v ≡
{(s, s ′, r) | n ∈ set (N s) −→ s ′ = s ∧ r = RLookup (PageTable s (n, v))}

Insertion of new mappings is the most complicated of the operations in this
model. Assuming a valid address space argument is supplied, there are two pos-
sibilities here, depending on whether the mapping overlaps an existing mapping.
If an overlap exists then a conflicting mapping is not inserted. Conflicts occur if
the page-set for v at the given page size ps has a non-empty intersection with
the set of currently mapped virtual addresses. Figure 12 shows two examples of
this.

valid-vaddr pt n ≡ {x | pt (n, x ) 6= None}

conflict n v ps pt ≡ valid-vaddr pt n ∩ page-set v ps 6= {}

If there is no conflict, update-page-table gives the new state, where an unused
location in the PTE heap is selected and all virtual addresses in page-set v ps
are set to this value with the given page size. The choice of location in the heap
is non-deterministic in this model.

Virtual address
space 

page_set v0 m0

Virtual address
space 

page_set v1 m1

Invalid mapping

Valid mapping (no conflict)

Valid mapping (conflict)

Fig. 12. Example conflicts with existing mappings

update-page-table n v ps ≡
{(s, s ′) | ∃ p. ¬ PageTable s `p p ∧

s ′ =
s(|PageTable :=

λ(n ′, v ′).
if n ′ = n ∧ v ′ ∈ page-set v ps then b(p, ps)c
else PageTable s (n ′, v ′)|)}

The result of this operation in the case of a successful insertion is the PTE
pointer for the new mapping. If insertion was not successful, but the existing
mapping fully contains the new one, a pointer to the existing mapping is re-
turned. Otherwise the operation returns None.
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insert-result n v ps s ≡
case PageTable s (n, v) of None ⇒ None
| b(p, ps ′)c ⇒ if w2n ps < w2n ps ′ then b(p, ps ′)c else None

inserta n v ps ≡
{(s, s ′, r) | n ∈ set (N s) −→

(if conflict n v ps (PageTable s)
then (s, s ′) ∈ update-page-table n v ps else s = s ′) ∧

r = RInsert (insert-result n v ps s ′)}

The fields of the PTE can be set and retrieved through the heap in the following
operations. For each operation it is a precondition that the PTE pointer supplied
is valid and the page size at which it is mapped is also correctly provided as an
argument. A PTE pointer p is considered valid, pt `p p, if it is in the image of
the page table pt for some page size ps, pt `p p,ps if the pair (p, ps) is in this
image. The notation f ‘ A stands for the image of set A under f.

pt `p p ≡ p ∈ fst ‘ ran pt

pt `p p,ps ≡ (p, ps) ∈ ran pt

set-paddra p paddr ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→

s ′ = s(|Heap := (Heap s)(p := Heap s p(|Paddr := paddr |))|) ∧
r = RSetPaddr}

get-paddra p ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→ s ′ = s ∧

r = RGetPaddr (Paddr (Heap s p))}

Associated with each PTE is a link node. While not part of the fundamental
page table abstraction, this is required for the mapping database and other
operations in the kernel. The link node stores the virtual address and a pointer
to a corresponding node in the MDB for the mapping. In the implementation
this is optimised to be a single field, with the bitwise exclusive-OR of the values
stored in the link node. We model this by requiring the complementary value to
be passed as an argument to the inspection operations.

set-link-nodea p m v ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→

s ′ =
s(|Heap := (Heap s)(p := Heap s p(|MapNode := m, Vaddr := v |))|) ∧
r = RSetPaddr}

get-map-nodea p v ps ≡
{(s, s ′, r) | PageTable s `p p,ps ∧ v = Vaddr (Heap s p) −→ s ′ = s ∧

r = RGetMapNode (MapNode (Heap s p))}

Some features that should be present in a complete page table model have been
omitted here and are currently being added to the model. These range from
fairly trivial changes to those necessary to increase the generality of the model.
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An example of a small omission is the status and cache control bits in the PTE
which are not included for brevity. These do not differ conceptually from other
fields in the PTE such as permission bits for the purpose of this model. A more
important limitation is that on some architectures it may not be possible to
insert a mapping even if no conflicts exist due to the page table structure being
affected by nearby mappings. A hardware model for the TLB and page table
walker can be added to provide a lookup operation as described in the abstract
address spaces ADT, and to supply semantics for the cache and status bits in
the PTE. Finally, we assume translation and protection granularity are identical
which is not the case in general, for example sub-page permissions on the ARM
architecture.

4.2 Concrete model

A simple way to implement the page table would be to use a linear array in
physical memory, indexed with the virtual page number. This would have the
advantage of a fast lookup time, which is desirable as the page table lookup
operation is a major component of the TLB refill cost. Unfortunately, this is
wasteful of physical memory and does not scale with larger address spaces. For
example, consider a 32-bit virtual address space, with 4KB pages and a 24-
bit physical address space with 4KB frames2. Assume each page table entry is a
single word, 4 bytes. The frame number can easily be stored in the PTE, requiring
only 12 bits. However, the array will require 220 PTE locations, and hence require
222 bytes of contiguous storage in physical memory, which may potentially only
be used sparsely. In addition, this has poor support for superpages, with large
superpages requiring massive duplication of PTEs, making insertion and PTE
update operations costly.

Modern architectures and operating systems therefore use data structures
that balance the requirement for fast traversal and memory use considerations.
These include multi-level page tables, inverse page tables, hashed page tables [8]
and guarded page tables [13]. L4Ka::Pistachio implements a multi-level hierar-
chical page table (MLPT). The page table format defined by the ARM hardware,
a two-level page table, is an instance of this.

MLPTs are tree data structures where each node contains an array of a
fixed, level dependent, size. Elements of these arrays are either invalid, leaves
corresponding to PTEs in the abstract model, or pointers to the next level. They
provide both storage for valid PTE heap entries and the mapping function from
V to PTEName for an address space N. Lookup proceeds by indexing the root
table, with a base address equivalent to the address space name, with the most
significant kt bits of the virtual address, where ki is the number of bits in the
index field for level i and the page table has a maximum of t + 1 levels. Figure
13 shows a two-level page table with the root page table indexing occurring at
level 1. Each entry of the table corresponds to a contiguous region of the address
space. If the address space is of size 2n then the array will have 2kt entries and

2 Physical pages are also called frames.
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Fig. 13. Indexing during lookup and insertion

each entry will map a 2n−kt region. If either an invalid entry or leaf PTE is found
at the index then a pointer to this is returned. Otherwise, if the entry points to
a table at the next level then the algorithm recurses, with the next table, the
n− kt least significant bits of the virtual address and the next index size, kt−1,
until either a valid PTE is found or the bottom level is reached and a pointer
to the indexed entry is returned. If the returned pointer references a leaf PTE
then a valid (in the sense of the abstract model) mapping exists for the virtual
address.

Assuming no conflicts, insertion works similarly, with the exception that a
new node of appropriate size is allocated and linked to when an invalid node is
indexed at a level above the intended insertion point.

We describe the two larger operations, lookup and insertion, from the con-
crete model below. We utilise the verification environment of Schirmer [16] with
custom pretty-printing to provide C-like syntax. Keywords, procedure names,
and program variables referring to the current state are printed in typewriter
font. Normal Isabelle functions and constants are unchanged. In the Hoare triple
{|σ. P |} s {| Q σn |}, the name σ is bound to the pre-state, and σn refers to the
program variable n in state σ.

The concrete state space has 3 components in its global state — a heap for
nodes in the page table pt-h, a list of pointers allocated in the heap v-pt and the
set of currently active address spaces vN. We model arrays as lists and hence the
type of pt-h is given by

types PageTableHeap = PTabName ⇒ PTE list

where PTabName is the type of pointers to page table nodes and PTE is defined
as the disjoint union:

datatype PTE = Leaf PTEa | Next PTabName | Invalid
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The type PTEName is now a pointer to an array entry and hence consists of
two components — a pointer to the base of the array and an index of type
PTabOffset.

types PTEName = PTabName × PTabOffset

For convenience we introduce two abbreviations when working with PTE-
Name pointers. The PTEName for a virtual address v at level l and node n is
given by ϕ n,v ,l. The PTE for a PTEName pointer in page table heap pt-h is
written as ψ pt-h p.

The names of address spaces are now synonymous with the root node in the
page table.

types N = PTabName

The source code for the page table lookup operation is given in Figure 15. The
parameters are found in variables n and v. Variables with a tmp prefix are local
to this function. Various functions are called inside the body of this function.
One such example is ptab index which performs the indexing operation for a
given page table level, shown in Figure 14.

procedures ptab-index (n,v ,l |r2) =
r = v >> hw pgshifts[w2n l] &

(1 << (hw pgshifts[w2n l + 1] - hw pgshifts[w2n l]) - 1);
r2 = (n, r);

Fig. 14. Page table indexing code

The function ptab index takes an address space name n, a virtual page v,
and a level l in the page table. The result is returned in variable r2. The ar-
ray hw pgshifts represents page-bits from the abstract model. The predicates
pte is valid and pte is subtree on PTENames indicate whether the derefer-
enced PTE has a flag different from Invalid or possesses a Next tag respectively.
For PTE s of the form Next n, pte get next gives the pointer to the next level
in the page table n. It is a precondition on all these functions that the sup-
plied pointer p is valid in the current state s, i.e. p ∈ set (v-pt- ′ s). We omit
the source code of these functions for brevity, with the intention that the source
code presented so far provides a sufficient idea of the level of abstraction and
language in which these are expressed.

The invariant is necessary to discharge the proof obligations related to the
Hoare triple used to show refinement. wfpt is a well-formedness predicate on the
page table structure, with conditions expressing properties of the tree structure,
the size of nodes at different levels, the height of the tree, etc. table-level is
a relation between page tables nodes and level numbers. R is the abstraction
function for the page table — a description of R, pt-lookup-f and pt-lookup-g is
provided in Section 4.3.
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Page table insertion source code is provided in Figure 16. Two additional
functions are present here. pte make subtree creates a new node, allocating
an array n in the heap of size appropriate for the given level and setting the
PTE referenced by the supplied pointer to Next n. pte make leaf sets the PTE
referenced by the supplied pointer to a Leaf value with no access rights. The
invariant is similar to that for pt lookup, however the final conjunct describes
the changing page table structure as new levels are added.

It should be noted that there is not necessarily any overhead from structuring
the code as a series of function calls, since small functions can be either inlined
during code generation or flagged as inlineable to the compiler.

procedures pt-lookup(n,v |r5) =
{|σ. n ∈ vN ∧ wfpt (pt h, v pt, vN)|}
tmp level = pt-top-level;
tmp tab = n;

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

while (!(tmp level == 0) && tmp valid && tmp subtree)

/* INV: {|wfpt (pt h, v pt, vN) ∧ w2n tmp level ≤ pt-top-level ′ ∧
tmp valid = pte-is-valid ′ pt h tmp pte ∧
tmp subtree = pte-is-subtree ′ pt h tmp pte ∧
tmp pte = ϕ tmp tab,v,tmp level ∧
(tmp tab, w2n tmp level) ∈ table-level vN pt h ∧
pt-lookup-g tmp tab v (w2n tmp level) pt h =
pt-lookup-f σn σv σpt-h ∧
v = σv ∧ pt h = σpt-h ∧ vN = σvN ∧ v pt = σv-pt |}

*/

{
tmp level = tmp level - 1;
tmp tab = pte get next(tmp pte);

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

}
r5 = (tmp pte, tmp level);
{|r5 = pt-lookup-f σn σv σpt-h ∧ R (pt h, vN) = R (σpt-h, σvN ) ∧
wfpt (pt h, v pt, vN)|}

Fig. 15. Page table lookup code

While quite low-level, this is in fact an abstraction of actual page table imple-
mentations. In reality, multiple page levels in this model may consist of a single
page level at the hardware level, where duplication is used to achieve superpages.
Also, PTEs are bitfields and link nodes are stored at a fixed, level dependent,
offset from the PTE. Procedures such as pte get next and pte is subtree
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procedures pt-insert(n,v ,l |r6) =
{|σ. n ∈ vN ∧ w2n l ≤ pt-top-level ′ ∧ wfpt (pt h, v pt, vN)|}
tmp level = pt-top-level;
tmp tab = n;

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

while (!(tmp level == l) && (tmp subtree || !tmp valid))
/* INV: {|w2n tmp level ≤ pt-top-level ′ ∧ wfpt (σpt-h, σv-pt , σvN ) ∧ v = σv ∧

tmp subtree = pte-is-subtree ′ pt h tmp pte ∧ vN = σvN ∧ σn ∈ vN ∧
tmp valid = pte-is-valid ′ pt h tmp pte ∧ wfpt (pt h, v pt, vN) ∧
¬ w2n tmp level < w2n l ∧
(tmp tab, w2n tmp level) ∈ table-level vN pt h ∧
tmp pte = ϕ tmp tab,v,tmp level ∧
pt-lookup-g tmp tab v (w2n tmp level) pt h =
pt-lookup-f σn σv pt h ∧
l = σ l ∧ R (pt h, vN) = R (σpt-h, σvN ) ∧
(∀ x l . if pt-lookup-f σn σv σpt-h = (x , l) ∧ w2n tmp level ≤ w2n l

then ∃ y . pt-lookup-g tmp tab v (w2n tmp level) pt h =
(y , tmp level)

else pt h = σpt-h ∧ v pt = σv-pt)|}
*/

{
tmp level = tmp level - 1;
if (!tmp valid) {

pte make subtree(tmp level,tmp pte);

}
tmp tab = pte get next(tmp pte);

tmp pte = ptab index(tmp tab,v,tmp level);

tmp subtree = pte is subtree(tmp pte);

tmp valid = pte is valid(tmp pte);

}
if (!tmp subtree) {
if (!tmp valid) {

pte make leaf(tmp pte);

}
r6 = b(tmp pte, tmp level)c;

} else {
r6 = None;

}
{|r6 = pt-inserta-out σn σv σ l (R (pt h, vN)) ∧
R (pt h, vN) ∈ pt-inserta

σn σv σ l (R (σpt-h, σvN )) ∧ wfpt (pt h, v pt, vN)|}

Fig. 16. Page table insertion code
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constitute the underlying ADT, of which concrete models should correspond to
architecture-specific implementations of page tables.

4.3 Refinement

We can define an ADT for the operations in the above model and show refinement
using the abstraction relation r. pt-lookup-f is a functional implementation of
page table lookup as described in the previous section.

pt-lookup-g n v l pt-h =
(let p = ϕ n,v ,n2w l
in case ψ pt-h p of

Next n ′ ⇒ if l 6= 0 then pt-lookup-g n ′ v (l − 1) pt-h else (p, w-0)
| - ⇒ (p, n2w l))

pt-lookup-f n v pt-h ≡ pt-lookup-g n v pt-top-level ′ pt-h

The function R maps from concrete page tables to the abstract page table
function. This hides the type of nodes other than Leaf by returning None if the
pointer returned by page table lookup does not reference a Leaf.

R c ≡
let (pt-h, N ) = c
in λ(n, v).

if n /∈ N then None
else let (p, l) = pt-lookup-f n v pt-h

in if ψ pt-h p 6= Invalid then b(p, l)c else None

The same set of valid address spaces should be in both concrete and abstract
models. Valid Leaf PTE s appear at the same location in the abstract heap.

r ≡
{(a, c) | set (N a) = vN- ′ c ∧
(∀ p. case ψ pt-h- ′ c p of

Leaf pte ⇒ pt-h- ′ c,v-pt- ′ c ` p −→ Heap a p = pte | - ⇒ True) ∧
PageTable a = R (pt-h- ′ c, vN- ′ c)}

The conditions in the Hoare triple specifications for the source code ensure
that well-formedness holds and is preserved, that the abstraction relation holds
on the concrete and abstract states pre- and post-operation, and that the ex-
pected values are returned. Using the soundness result of the Hoare logic [16], we
get that the concrete implementations on the semantic level correctly simulate
the abstract model of page tables.

5 Conclusion

We have presented some important aspects of the refinement process in verifying
the virtual memory subsystem of the L4 microkernel. We have shown an abstract
model of address spaces together with the operations on them that the kernel
API offers. We have taken the memory lookup operation of this model, and
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described its implementation in the kernel using a page table data structure. We
have further refined this abstract view of the page table data structure towards
an implementation in the C programming language.

While we have not yet completely reached the level of C source code as it is
accepted by standard C compilers, it is already apparent that this final step is
within reach.

Further work in this direction includes enhancements to the Hoare-logic veri-
fication environment, such as the ability to directly use concrete C-syntax within
Isabelle, as well as using this verified implementation of page tables as a drop-in
replacement for the current L4Ka::Pistachio implementation. Our final goal is a
verified, high performance implementation of L4. Since our verified implementa-
tion is very close in terms of code and data structures being used to the existing
one, we do not expect any decrease in performance.

Acknowledgements We thank Espen Skoglund for providing a clean and generic
interface of the page table data structure in L4Ka::Pistachio that was nicely
amenable to verification.
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