
Towards Verified Virtual Memory in L4

Gerwin Klein and Harvey Tuch

1 University of New South Wales, Sydney 2052, Australia
2 National ICT Australia?, Sydney, Australia
{gerwin.klein|harvey.tuch}@nicta.com.au

Abstract. We report on the initial stage of an on-going verification
project: the formalisation and verification of the L4 µ-kernel. We describe
an abstract model of the virtual memory subsystem in L4, prove safety
properties about this model, and describe refinement of the abstract
model towards the implementation of L4. All formalisations and proofs
have been carried out in the theorem prover Isabelle.

1 Introduction

L4 is a second generation microkernel based on the principles of minimality, flex-
ibility, and efficiency [10]. It provides the traditional advantages of the micro-
kernel approach to system structure, namely improved reliability and flexibility,
while overcoming the performance limitations of the previous generation of mi-
crokernels. With implementation sizes in the order of 10,000 lines of C++ and
assembler code it is about an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux.

The operating system (OS) is clearly one of the most fundamental com-
ponents of non-trivial systems. The correctness and reliability of the system
critically depends on the OS. In terms of security, the OS is part of the trusted
computing base, that is, the hardware and software necessary for the enforcement
of a system’s security policy. It has been repeatedly demonstrated that current
operating systems fail at these requirements of correctness, reliability, and secu-
rity. Microkernels address this problem by applying the principles of minimality
and least privilege to operating system architecture. However, the success of this
approach is still predicated on the microkernel being designed and implemented
correctly. We can address this by formally modelling and verifying it.

L4 has a design that is not only geared towards flexibility and reliability,
but is of a size which makes formalisation and verification feasible. Compared
to other operating system kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still considered a very large and
complex system. Our methodology for solving this verification problem is shown
in Fig. 1. It is a classic refinement strategy. We start out from an abstract model
of the kernel that is phrased in terms of user concepts as they are explained in

? National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council

Fig. 1. Overview

the L4 reference manual [1]. This is the level at which most of the safety and
security theorems will be shown. We then formally refine this abstract model
in multiple property preserving steps towards the implementation of L4. The
last step consists of verifying that the C++ and assembler source code of the
kernel correctly implements the most concrete refinement level. At the end of
this process, we will have shown that the kernel source code satisfies the safety
and security properties we have proved about the abstract model.

To keep complexity and time manageable, we have decided to take a thin
vertical slice out of this refinement process and to test the methodology on
one non-trivial subsystem of the kernel initially. This will not give hard safety
guarantees about the full system, but it will increase confidence in the imple-
mentation and improve understanding of the target subsystem. The goal is to
move through the full process quickly and to uncover problems in the interaction
of refinement layers and the different formalisms utilised.

In this paper we report on first experiences with this project. L4 provides
three main abstractions: threads, address spaces, and inter-process communica-
tion (IPC). We have chosen to start with address spaces. This is supported by
the virtual memory subsystem of the kernel and is fundamental for implementing
separation and security policies on top of L4. We have built an abstract model
of address spaces and we show a first refinement of it.

One of the central questions in any verification project is: When exactly is
the specification of the system correct? What is the system supposed to do? In
this case we have taken the L4 X.2 API description as the main reference [1] and
use the L4Ka::Pistachio [8] implementation on the ARM architecture to resolve
ambiguities and address implementation issues, in addition to discussions with
the developers on the pistachio-core mailing list.

As we are mainly trying to test the methodology, we are making some sim-
plifying assumptions in the formalisation. We are also not planning to verify the
current implementation of L4Ka::Pistachio. On the contrary, it is a goal and ex-
pected outcome of this project that we clarify and simplify the implementation.

If verification makes it necessary, even a complete reimplementation of the L4
X.2 API is possible.

Earlier work on operating system kernel formalisation and verification in-
cludes PSOS [11] and UCLA Secure Unix [15]. The focus of this work was on
capability-based security kernels, allowing security policies such as multi-level
security to be enforced. These efforts were hampered by the lack of mechanisa-
tion and appropriate tools available at the time and so while the designs were
formalised, the full verification proofs were not practical. Later work, such as
KIT [3], describes verification of properties such as process isolation to source
or object level but with kernels providing far simpler and less general abstrac-
tions than modern microkernels. There exists some work in the literature on
the modelling of microkernels at the abstract level with varying degrees of com-
pleteness. Bevier and Smith [4] specify legal Mach states and describe Mach
system calls using temporal logic. Shapiro and Weber [13] give an operational
semantics for EROS and prove a confinement security policy. Our work differs
in that we plan to formally relate our model to the implementation. Some case
studies [7,5,14] appear in the literature in which the IPC and scheduling sub-
systems of microkernels have been described in PROMELA and verified with
the SPIN model checker. These abstractions were not necessarily sound, having
been manually constructed from the implementations, and so while useful for
discovering concurrency bugs do not provide guarantees of correctness. Finally,
the VFiasco project, working with the Fiasco implementation of L4, has pub-
lished exploratory work on the issues involved in C++ verification at the source
level [9].

After introducing our notation in the following section, we first present an
abstract conceptual model of virtual memory in L4 in section 3 and refine it
towards an implementation in section 4.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t:: τ means that HOL term t has HOL type τ .

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. For succinctness we write bac instead
of Some a.

Function update is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b.
Partial functions are modelled as functions of type ′a ⇒ ′b option, where

None represents undefinedness and f x = byc means x is mapped to y. We call
such functions maps, and abbreviate f (x :=byc) to f (x 7→ y). The map λx . None

is written empty, and empty(. . .), where . . . are updates, abbreviates to [. . .]. For
example, empty(x 7→y) becomes [x 7→ y].

Implication is denoted by =⇒ and [[A1; . . .; An]] =⇒ A abbreviates A1 =⇒
(. . . =⇒ (An =⇒ A). . .).

Finally, how are the formulae you see related to the formal Isabelle text? Our
motto is

What you see is what we proved!

Isabelle theories can be augmented with LATEX text which may contain ref-
erences to Isabelle theorems (by name — see chapter 4 of [12]). We use this
presentation mechanism to generate the text for most of the definitions and all
of the theorems in this paper automatically.

3 Abstract Address Space Model

The virtual memory subsystem in L4 provides a flexible, hierarchical way of
manipulating the mapping from virtual to physical memory pages of address
spaces at user-level. We now present a formal model for this. Although the
granularity at which L4 maps memory is the page level and does not go down
to single addresses, we use the terms address and page interchangeably in the
following.

3.1 Address Spaces

Fig. 2 illustrates the concept of hierarchical mappings. Large boxes depict virtual
address spaces. The smaller boxes inside stand for virtual pages in the address
space. The rounded box at the bottom is the set of physical pages. The arrows
stand for direct mappings which connect pages in one address spaces to addresses
in (possibly) other address spaces. In well-behaved states, the transitive closure
of mappings always ends in physical pages. The example in Fig. 2 maps virtual
page v1 in space n1, as well as v2 in n2, and v4 in n4 to the physical page r1.

Fig. 2. Address Spaces

Formally, we use the types R for the physical pages (r 1, r2, etc.), V for
virtual pages (v1, v2, etc.), and N for the names of address spaces (n1, n2, etc.).

A position in this picture is determined uniquely by either naming a virtual
page in a virtual address space, or by naming a physical page. We call these the
mappings M :

datatype M = Virtual N V | Real R

An address space associates with each virtual page either a mapping, or
nothing (the nil page). We implement this in Isabelle by the option datatype:

types space = V ⇒ M option

The machine state is then a map from address space names to address spaces.
Not all names need to be associated with an address space, so we use option

again:

types state = N ⇒ space option

To relate these functions to the arrows in Fig. 2, we use the concept of paths.
The term s ` x 1 y means that in state s there is a direct path from position
x to position y. There is a direct path from position Virtual n v to another
position y if in state s the address space with name n is defined and maps the
virtual page v to y. There can be no paths starting at physical pages. Formally,

s ` x 1 y = (∃n v σ. x = Virtual n v ∧ s n = bσc ∧ σ v = byc)

We write `
+ for the transitive and `

∗ for the reflexive and
transitive closure of the direct path relation.

3.2 Operations

The L4 kernel exports the following basic operations on address spaces: unmap,
flush, map, and grant. The former two operations remove mappings, the latter
two create or move mappings. We explain and define them below.

Fig. 3 illustrates the unmap n v operation. It is the most fundamental of the
operations above. We say a space n unmaps v if it removes all mappings that
depend on Virtual n v, or in terms of paths if it removes all edges leading to
Virtual n v.

To implement this, we use a function clear that, given name n, page v, and
address space σ in a state s, returns σ with all v ′ leading to Virtual n v mapped
to None.

clear :: N ⇒ V ⇒ state ⇒ space ⇒ space
clear n v s σ ≡
λv ′. case σ v ′

of None ⇒ None
| bmc ⇒ if s ` m ∗ Virtual n v then None else bmc

An unmap n v in state s then produces a new state in which each address
space is cleared of all paths leading to Virtual n v.

Fig. 3. The unmap operation (before and after)

unmap :: N ⇒ V ⇒ state ⇒ state
unmap n v s ≡ λn ′. case s n ′

of None ⇒ None | bσc ⇒ bclear n v s σc

For updating a space with name n at page v with a new mapping m we write
n,v ← m, where m may be None.

n,v ← m ≡ λs. s(n := case s n of None ⇒ None | bσc ⇒ bσ(v := m)c)

With this, the flush operation is simply unmap followed by setting n,v to
None.

flush :: N ⇒ V ⇒ state ⇒ state
flush n v ≡ n,v ← None ◦ unmap n v

The remaining two operations map and grant establish new mappings in the
receiving address space. To ensure a consistent new state, this new mapping
must ultimately be connected to a physical page. We call a mapping m valid in
state s (written s ` m) if it is a physical page, or if it is of the form Virtual n v

and is the source of some direct path. We show later that in all reachable states
of the system, this definition is equivalent to saying that the mapping leads to
a physical page.

s ` m ≡ case m of Virtual n v ⇒ ∃ x . s ` m 1 x | Real r ⇒ True

Before the kernel establishes a new value, the destination is always flushed.
This may invalidate the source. The operation only continues if the source is
still valid, otherwise it stops. We capture this behaviour in a slightly modified
update notation ↼:

n,v ↼ m ≡ λs. let s0 = flush n v s in (if s0 ` m then n,v ← bmc else id) s0

In L4, an address space n can map a page v to another space n ′ at page v ′.
Again, the operation only goes ahead, if the mapping Virtual n v is valid:

map :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
map n v n ′ v ′ s ≡ if ¬ s ` Virtual n v then s else (n ′,v ′ ↼ Virtual n v) s

Fig. 4 shows an example for the map operation. Address space n maps page
v to n ′ at v ′. The destination n ′,v ′ is first flushed and then updated with the
new mapping Virtual n v.

A space n can also grant a page v to v ′ in n ′. As illustrated in Fig. 5, granting
updates n ′,v ′ to the value of n at v and flushes the source n,v.

Fig. 4. The map operation (before and after)

Fig. 5. The grant operation (before and after)

grant :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
grant n v n ′ v ′ s ≡
if ¬ s ` Virtual n v then s
else let bσc = s n; bmc = σ v in (flush n v ◦ n ′,v ′ ↼ m) s

This concludes the kernel operations on address spaces. We have also mod-
elled the hardware memory management unit (MMU). On this abstract level, all
the MMU does is lookup: it determines which physical page needs to be accessed
for each virtual page v and address space n. We write s ` n v B r if lookup of
page v in the address space with name n in state s yields the physical page r.
As we already have the concepts of paths, this is easily described formally:

s ` n,v B brc = s ` Virtual n v + Real r
s ` n,v B None = (∃σ. s n = bσc ∧ σ v = None) ∨ s n = None

The model in this section is based on an earlier pen-and-paper formalisation
of L4 address spaces by Liedtke [10]. Formalising it in Isabelle/HOL eliminated
problems like the mutual recursive definition of the update and flush functions
being not well-founded. It would be well-founded—at least on reachable kernel
states—if the model had the property that no loops can be constructed in ad-
dress spaces. This is not true in the original model. The operation map n v n ′ v ′

followed by grant n ′ v ′ n v is a counter example. We also have introduced the
formal concept of valid mappings to establish this no-loops property as well as
the fact that any page that is mapped at all is mapped to a physical address.

3.3 An abstract data type for virtual memory

In the following we phrase the model of virtual memory and of the MMU hard-
ware in terms of an abstract data type consisting of the type state and the
operations detailed above. This data type (not to be confused with Isabelle’s
keyword datatype) is used implicitly by any user-level program. Even if the
program does not invoke any mapping operations directly, the CPU performs a
lookup operation with every memory access.

Putting the operations in terms of an abstract data type enables us to formu-
late refinement explicitly: if the data type of the abstract address spaces model
is replaced with the data type of more concrete models (and finally the imple-
mentation) the program will not have any observable differences in behaviour.

Formally we define an abstract data type as a record consisting of an initial
set of states and of a transition relation that models execution:

record (′a, ′j) DataType =
Init :: ′a set

Step :: ′j → (′a × ′a) set

For our virtual memory model, the operations are enumerated in the index
type VMIndex :

datatype VMIndex = create N | unmap N V | flush N V | map N V N V

| grant N V N V | lookup N V (R option)

The definition of the abstract model A in terms of a data type is then:

Init A = {[σ0 7→ σ] |σ. inj p σ ∧ ran σ ⊆ range Real}
Step A (lookup n v r) = {(s, s ′) | s = s ′ ∧ s ` n,v B r}
Step A (create n) = {(s, s ′) | s n = None ∧ s ′ = s(n 7→ empty)}
Step A (unmap n v) = {(s, s ′) | s n 6= None ∧ s ′ = unmap n v s}
Step A (flush n v) = {(s, s ′) | s n 6= None ∧ s ′ = flush n v s}
Step A (map n v n ′ v ′) = {(s, s ′) | s n 6= None ∧ s n ′ 6= None ∧ s ′ = map n v n ′ v ′ s}
Step A (grant n v n ′ v ′) =
{(s, s ′) | s n 6= None ∧ s n ′ 6= None ∧ s ′ = grant n v n ′ v ′ s}

The boot process creates an address space σ0 that is an injective mapping
from virtual to physical pages. The functions ran and range return the codomain
of a function, where ran works on functions ′a ⇒ ′b option and range on total
functions. Injectivity is constrained to the part of the function that returns bxc:
inj p f ≡ inj-on f {x | ∃ y . f x = byc}.

The lookup operation is special. In the context of a real system this operation
would return a value, since one of the points of the virtual memory abstraction
is to provide address translation. If a lookup yields a None result the kernel
typically raises a page fault exception. Since we do not model the larger system,
we simplify lookup instead to a subset of the identity relation on state.

Creating a new address space n is modelled by updating the state s at n

with the predefined map empty. The other mapping operations have been de-
fined above. All of them require the address spaces they operate on to be valid.
This condition is ensured automatically in the current L4 implementation as the
address spaces are determined by sender and receiver of an IPC operation.

3.4 Properties

We have shown a number of safety properties about the abstract address space
model. They are formulated as invariants over the abstract datatype. A set of
states I is an invariant if it contains all initial states and if execution of any
operation in a state of I again leads to a state in I. We write D |= I when I is
an invariant of data type D.

Theorem 1. There are no loops in the address space structure.

A |= {s | ∀ x . ¬ s ` x + x}

The proof is by case distinction on the operations and proceeds by observing
how each operation changes existing paths. Theorem 1 is significant for im-
plementing the lookup function efficiently. It also ensures that internal kernel
functions can walk the corresponding data structures naively. Together with the
properties below it says that address spaces always have a tree structure.

Theorem 2. All valid pages translate to physical pages.

A |= {s | ∀ x . s ` x −→ (∃ r . s ` x ∗ Real r)}

The proof is again by case distinction on the operations. Together with the
following theorem we obtain that address lookup is a total function on data
type A.

Theorem 3. The lookup relation is a function.

[[s ` n,v B r ; s ` n,v B r ′]] =⇒ r = r ′

This theorem follows directly from the fact that paths are built on functions.
That address lookup is a total function may sound like merely a nice formal

property, but it is quite literally an important safety property in reality. Un-
defined behaviour, possibly physical damage, may result if two conflicting TLB
entries are present for the same virtual address. The current ARM reference
manual [2, p. B3-26] explicitly warns against this scenario.

3.5 Simplifications and Assumptions

The current model makes the following simplifications and assumptions.

– The L4Ka::Pistachio API stipulates two regions per address space that are
shared between the user and kernel, the kernel interface page (KIP) and
user thread control blocks (UTCBs). These should have a valid translation
from virtual to physical memory pages, but can not be manipulated by the
mapping operations.

– The mapping operations in L4 work on regions of the address space rather
than individual pages. These regions, known as flexpages, are 2kb, k ≥ 0
aligned and sized where b is the minimum page size on the architecture. This
introduces significant complexity in the implementation and has a number of

boundary conditions of interest, so adding this to the abstract model would
be beneficial. At the same time, it is possible to create systems using L4 that
only use the minimum flexpage size so this omission does not pose a serious
limitation to the utility of the model.

– map and grant are implemented through the IPC primitives in L4 and involve
an agreement on the region to be transferred between sender and receiver.
This can be added when the IPC abstraction is modelled.

– Flexpages also have associated read, write and execute access rights. At
present the model can be considered as providing an all or nothing view of
access rights.

– We assume that all of the mapping operations are atomic, which is the case in
the current non-preemptable implementation, and a single processor, hence
a sequential system.

4 Model Refinement

The model in the previous section provides an abstract model of address spaces
in L4 but does not bear much resemblance to the kernel implementation. This
is not surprising since the kernel must provide an efficient realisation of the
mapping operations and the code supporting this executes under time and space
restrictions. For the purpose of source-code verification it is desirable to have a
more concrete model of the implementation. This model will be more complex
and detailed than the previous model and hence less suited to proving properties
such as the absence of loops in paths. By showing the concrete model to be a
refinement of the abstract model it is possible to retain the ability to reason and
prove properties at the abstract level. In this section we provide a motivation
and overview of the implementation in the L4Ka::Pistachio kernel of address
spaces, and then describe the refinement of the abstract address spaces model.

4.1 L4Ka::Pistachio Implementation

The implementation of address spaces is provided by the hardware and OS vir-
tual memory mechanisms. The lookup relation corresponds to the virtual-to-
physical mapping function provided by the MMU on the CPU. This transla-
tion is carried out on every memory access and so is critical to system perfor-
mance. This is typically hidden in the pipeline by an associative cache, called the
translation-lookaside buffer (TLB), holding a subset of mappings from the page

table data structure which is located in memory. On a TLB miss the page table is
accessed to perform address translation by a hardware mechanism (on the ARM
architecture) that walks the page table data structure. The page table must sup-
port fast address translation, since TLB misses are frequent enough to warrant
this, but this must be balanced with space considerations. In L4Ka::Pistachio a
multi-level hierarchical page table is implemented, of which the ARM hardware

defined page table format, a two-level page table, is an instance. The operations
that update mappings must also maintain coherence between the TLB and page
table, and also the data and instruction caches and memory on ARM since the
caches are virtually-addressed.

In addition to the virtual-to-physical mappings, an implementation of L4
address spaces requires a representation of the mappings between address spaces,
the mapping database (MDB). This is conceptually quite similar to the abstract
model, with paths reversed to give a tree rooted at each physical memory page.
The map, grant and unmap operations correspond to system calls and execute
with a small, fixed-size kernel stack. Hence it is desirable to avoid recursion.
This is achieved in L4Ka::Pistachio by implementing the mapping tree with a
linked-list representing the preorder traversal of the tree, augmented with depth
information. The list is doubly-linked and there are pointers stored between
nodes in the mapping database and nodes associated with the corresponding
page table nodes to avoid unnecessary traversals of either data structure in the
mapping operations.

4.2 Tree Address Space Model

We first show that a model of address spaces with the mapping database as a
forest to be a refinement of the model in Section 3. This is a conceptual step. It
is the view that most people working with the kernel implementation adopt.

Fig. 6. Forest

types MDB = (N × V) ⇀ (N × V) set

A tree here is a partial function from a node to a set of child nodes (see
Fig. 6). The function is required to be partial so that nodes with no children
and nodes not present in the tree can be distinguished.

record state1 =
N :: N set

M :: R ⇒ MDB

The N component of the state now contains the names of the valid address
spaces and each physical memory page has an associated mapping tree (possibly
empty) in the M component of the state.

The direct path relation is defined as

s ` a 1
1 b = (∃ r mn. M s r a = bmnc ∧ b ∈ mn)

A direct path exists between nodes a and b if b is a child of a in a tree r.
Again, we write `

+
1 for the transitive and `

∗

1 for the
reflexive and transitive closure of the direct path relation. A path between a

and b indicates that b is in the subtree of a.
Lookup in the tree model is written as s ` n,v B1 r and is defined with:

s ` n,v B1 brc = (M s r (n, v) 6= None)
s ` n,v B1 None = ((∀ r . M s r (n, v) = None) ∧ n ∈ N s ∨ n /∈ N s)

Lookup corresponds to tree membership for a node.
The unmap1 operation then simply removes all nodes in the subtree of the

target from the tree, except the target, and all references to these nodes from
other nodes. The notation s(|M := x |) denotes update of field M in record s with
value x.

unmap1 n v s ≡
s(|M := λr x . case M s r x of None ⇒ None

| bmnc ⇒
if s ` (n, v) +

1 x then None
else b{b | b ∈ mn ∧ ¬ s ` (n, v) +

1 b}c|)

Similarly, flush1 removes all nodes in the subtree along with their correspond-
ing references.

flush1 n v s ≡
s(|M := λr x . case M s r x of None ⇒ None

| bmnc ⇒
if s ` (n, v) ∗

1 x then None
else b{b | b ∈ mn ∧ ¬ s ` (n, v) ∗

1 b}c|)

map1 is implemented by inserting a new node for the map destination in the
tree beneath the map source.

map1 n v n ′ v ′ s ≡
if s ` n,v B1 None then s
else let s ′ = flush1 n ′ v ′ s

in if s ′ ` n,v B1 None then s ′
else update-map1 n v n ′ v ′ s ′

update-map1 n v n ′ v ′ s ≡
s(|M := λr . case M s r (n, v) of None ⇒ M s r

| bmnc ⇒ M s r((n, v) 7→ mn ∪ {(n ′, v ′)}, (n ′, v ′) 7→ {})|)

In grant1 a node is inserted into the tree for the destination if the prior flush
and unmap do not result in the source being removed, and any references to the
source are replaced by references to the destination node.

grant1 n v n ′ v ′ s ≡
if s ` n,v B1 None then s
else let s ′ = flush1 n ′ v ′ s

in if s ′ ` n,v B1 None then s ′
else update-grant1 n v n ′ v ′ s ′

update-grant1 n v n ′ v ′ s ≡
let s ′ = unmap1 n v s
in s ′(|M := λr x . if x = (n ′, v ′) ∧ s ′ ` n,v B1 brc then b{}c

else case M s ′ r x of None ⇒ None
| bmnc ⇒

if x = (n, v) then None
else b{b | b ∈ mn ∧ b 6= (n, v) ∨

(n, v) ∈ mn ∧ b = (n ′, v ′)}c|)

4.3 Refinement Proof

In this section we again phrase the model presented above in terms of a data
type. The tree data type M is:

Init M =
{(|N = {σ0}, M = λr nv . if P ′ nv = brc then b{}c else None|) |P ′.
inj p P ′ ∧ fst ‘ dom P ′ ⊆ {σ0}}
Step M (lookup n v r) = {(s, s ′) | s = s ′ ∧ s ` n,v B1 r}
Step M (create n) = {(s, s ′) | n /∈ N s ∧ s ′ = s(|N := insert n (N s)|)}
Step M (unmap n v) = {(s, s ′) | n ∈ N s ∧ s ′ = unmap1 n v s}
Step M (flush n v) = {(s, s ′) | n ∈ N s ∧ s ′ = flush1 n v s}
Step M (map n v n ′ v ′) = {(s, s ′) | n ∈ N s ∧ n ′ ∈ N s ∧ s ′ = map1 n v n ′ v ′ s}
Step M (grant n v n ′ v ′) = {(s, s ′) | n ∈ N s ∧ n ′ ∈ N s ∧ s ′ = grant1 n v n ′ v ′ s}

We show that the tree data type is a refinement of the abstract data type.
Here refinement is taken to mean data refinement [6] and we use the proof
technique of simulation.

We begin with the abstraction relation R1 between concrete state sc and
abstract states sa:

R1 ≡
{(sc, sa) | dom sa = N sc ∧

(∀n v r . sa ` n,v B brc = sc ` n,v B1 brc) ∧
(∀n v n ′ v ′. sa ` Virtual n v 1 Virtual n ′ v ′ = sc ` (n ′, v ′) 1

1 (n, v))}

Here it is clear that the path relation in the tree model is the inverse of the
path relation in the abstract model.

We then show that the diagrams in Fig. 7 commute, for all operations. This
is achieved by showing forward simulation:

C ≤F A ≡ ∃ r . Init C ⊆ r ‘‘ Init A ∧ (∀ j . r ;; Step C j ⊆ Step A j ;; r)

R

InitA

InitC

R R

StepA(j)

StepC(j)

Fig. 7. Simulation

where ‘‘ is the image of a set under a relation, and ;; the composition of two
relations.

Theorem 4. The tree data type simulates the abstract data type

M ≤F A

The proof is by case distinction on the operations of the data type. It proceeds
by observing how each operation changes the state in terms of the path and
lookup relations on the concrete and abstract level. For example, the direct path
relation after flush can be shown to be:

flush n v s ` x 1 y = (s ` x 1 y ∧ ¬ s ` x ∗ Virtual n v)

flush1 n v s ` x 1
1 y = (s ` x 1

1 y ∧ ¬ s ` (n, v) ∗

1 y)

Simulation gives that the properties proved as invariants on the abstract
data type also hold on the concrete data type, i.e. the safety properties proved
in Section 3.4 also hold on the concrete data type.

Also, since the operations are deterministic, the simulation also holds in the
other direction.

Theorem 5. The abstract data type simulates the tree data type

A ≤F M

4.4 Further Refinement

The next step in the refinement process is to implement the forest with a list
model. The state space for this is based on the following type:

record TreeListNode =
Next :: TreeListNodeName option

Prev :: TreeListNodeName option

PTE :: PTEName

Depth :: nat

record TreeListHeap =
Valid :: TreeListNodeName set

Heap :: TreeListNodeName ⇒ TreeListNode

where TreeListNodeName and PTEName are uninterpreted types. These rep-
resent pointers to list nodes and page table entries respectively.

The mapping operations in this model are closer to those in the implementa-
tion. Unmap/flush iterate over the subtree unlinking nodes, map inserts a node
into the list immediately after the destination node and grant replaces the source
node with that of the destination in the list.

The following subtree relation can be used to connect the list to the tree
model.

s ` x 7→ y = (Next (Heap s x) = byc ∧ x ∈ Valid s)

[[s ` m 7→ m ′; Depth (Heap s m) < Depth (Heap s m ′)]] =⇒ s ` m T m ′

[[s ` m T m ′; s ` m ′ 7→ ma; Depth (Heap s m) < Depth (Heap s ma)]]
=⇒ s ` m T ma

The refinement relation then implies the equivalence of subtrees in the mod-
els. We omit the page table and operations here, a complete description of this
refinement step will be published in later work.

Further refinement will proceed by independent refinement of the list heap
and page table to source level. There are a number of issues to address in this
process, including a choice of suitable language for use in the refinement steps
once we decompose operations into imperative code.

5 Conclusion

We have presented the initial stage of a refinement process to verify the virtual
memory subsystem of the L4 microkernel. We have shown an abstract model of
address spaces together with the operations on them that the kernel API offers.
We have refined it into a tree-like structure that is conceptually closer to the
data structures used in the kernel implementation.

The next step after refining the current stage into a linked list structure and a
page table implementation will be source code verification. Even though we have
not yet reached the implementation level, the process of building an abstract
model and refining it has already had a beneficial impact on the L4 kernel.
During the process of developing these models we have encountered and clarified
a number of small ambiguities and errors in the reference manual, have identified
unnecessary restrictions, and discovered small errors in the implementation.

Our activities in verifying the L4 kernel apart from the memory subsystem
include building a complete abstract model of the L4 API that is executable and
lends itself to simulation and exploration. We are also looking at how further

safety and security properties like confidentiality and information flow are best
formulated in the context of the L4 model we are building.

Acknowledgements We thank Kai Engelhardt, Kevin Elphinstone, Michael Nor-
rish, Adam Wiggins, and the developers on the pistachio-core mailing list for
advice and stimulating discussions.

References

1. L4 eXperimental Kernel Reference Manual Version X.2, 2004.
2. ARM Limited. ARM Architecture Reference Manual, June 2000.
3. William R. Bevier. Kit: A study in operating system verification. IEEE Transac-

tions on Software Engineering, 15(11):1382–1396, 1989.
4. William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach

kernel. Technical Report 102, Computational Logic, Inc., December 1994.
5. Thierry Cattel. Modelization and verification of a multiprocessor realtime OS

kernel. In Proceedings of FORTE ’94, Bern, Switzerland, October 1994.
6. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Number 47 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1998.

7. Gregory Duval and Jacques Julliand. Modelling and verification of the RUBIS
µ-kernel with SPIN. In SPIN95 Workshop Proceedings, 1995.

8. System Architecture Group. The L4Ka::Pistachio microkernel. White paper, Uni-
versity of Karlsruhe, May 2003.

9. Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report TUD-FI02-
03-März, TU Dresden, 2002.

10. J. Liedtke. On µ-kernel construction. In 15th ACM Symposium on Operating
System Principles (SOSP), December 1995.

11. P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A prov-
ably secure operating system: The system, its applications, and proofs. Technical
Report CSL-116, Computer Science Laboratory, SRI International, 1980.

12. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283. 2002.
http://www.in.tum.de/~nipkow/LNCS2283/ .

13. J. S. Shapiro and S. Weber. Verifying operating system security. Technical Report
MS-CIS-97-26, Distributed Systems Laboratory, University of Pennsylvania, 1997.

14. P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and G. Back.
Formal methods: a practical tool for OS implementors. In Proceedings of the Sixth
Workshop on Hot Topics in Operating Systems, pages 20–25, 1997.

15. Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and
verification of the UCLA Unix security kernel. Communications of the ACM,
23(2):118–131, February 1980.

http://www.in.tum.de/~nipkow/LNCS2283/

