Experience Report: sel.4

Formally Verifying a High-Performance Microkernel

Gerwin Klein

NICTA and University of NSW
gerwin.klein@nicta.com.au

Abstract

We report on our experience using Haskell as an executable specifi-
cation language in the formal verification of the seL4 microkernel.
The verification connects an abstract operational specification in
the theorem prover Isabelle/HOL to a C implementation of the mi-
crokernel. We describe how this project differs from other efforts,
and examine the effect of using Haskell in a large-scale formal ver-
ification. The kernel comprises 8,700 lines of C code; the verifica-
tion more than 150,000 lines of proof script.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.1.1 [Programming Tech-
niques]: Functional Programming; D.4.5 [Operating Systems]:
Reliability—Verification

General Terms Verification, Design, Languages

Keywords Haskell, seL4, microkernel, Isabelle/HOL

1. Introduction

We report on our experience using the functional programming
language Haskell in the formal verification of the seL.4 micro-
kernel (Elphinstone et al. 2007). The seL4 kernel is an evolution
of the high-performance L4 microkernel family (Liedtke 1995)
for secure, embedded devices. It provides essential operating sys-
tem services such as threads, inter-process communication, vir-
tual memory, interrupts, and authorisation via capabilities. In ear-
lier work (Derrin et al. 2006), we reported on our experience with
Haskell as a specification language for seL4. In this paper, we con-
centrate on the effect our choice of Haskell had on the formal verifi-
cation of the kernel, from abstract operational specification down to
high-performance C code. To our knowledge this is the first large-
scale formal verification project that employs Haskell (or any other
functional programming language) in this way.'

We found that working with Haskell decreased our kernel de-
sign time, enabled an iterative prototyping process in an area where
usually only top-down and bottom-up approaches are advocated,

' The ACL2 prover uses LISP as its formal language. Our use of Haskell
differs in the sense that our executable kernel prototype in Haskell is an
independent program that can stand on its own without theorem prover
involvement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.

Copyright (© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Philip Derrin
NICTA
philip.derrin@nicta.com.au

Kevin Elphinstone

NICTA and University of NSW
kevin.elphinstone@nicta.com.au

Isabelle/HOL

Abstract Specification

g

| Executable Specification

g

| High-Performance C Implementation |

| <] Haskell Prototype

< Automatic Translation

ﬁ Refinement Proof

Figure 1. Specification layers in the L4.verified project.

and made formal verification towards abstract and concrete levels
substantially easier and faster than they would have been otherwise.

The basic structure of the verification project is shown in Fig. 1.
The left-hand side follows the classic pattern of a traditional refine-
ment. There is an abstract specification at the top, an executable
specification in the middle, and a C implementation on the bottom.
Elkaduwe et al. (2008) have also created an even more abstract se-
curity model with security proof that would be placed above the ab-
stract specification, but it has not yet been formally connected with
the rest of the stack. In the setting of a commercial Common Cri-
teria evaluation, the abstract specification is the high-level design
and the executable specification is the low-level design. Cock et al.
(2008) present details on the proof between abstract and executable
level; the proof between executable specification and implementa-
tion will appear elsewhere (Winwood et al. 2009).

While neither the main property (functional correctness) nor
the main proof methodology (refinement) are unusual, the size
and scope of the project are. The verification does not stop at a
specification, but descends to the implementation level: 8,700 lines
of high-performance, manually tuned C code close to hardware.
All proofs in this project are machine-checked in the interactive
theorem prover Isabelle/HOL (Nipkow et al. 2002).

The project is also unusual in the approach it takes to kernel
design and implementation. Two teams were involved: a kernel de-
sign team with an operating systems background, and a verification
team with a formal methods background. The right-hand side of
Fig. 1 indicates that the executable specification of seL.4 is pro-
duced from a kernel prototype written in Haskell. We have imple-
mented an automatic translator that converts our subset of Haskell
into Isabelle/HOL. The Haskell prototype is written and maintained
by the design team. It is the principal embodiment of their design
decisions. It also became, after automatic translation, the starting
point for the verification effort. The traditional model for green-
field projects is to work top-down from a high-level specification,

and for existing implementations to work bottom-up from the im-
plementation level; beginning verification with an executable spec-
ification is unusual. The effects of this choice on the verification
are discussed below.

The abstract specification and the C implementation were devel-
oped manually; both were started before the design — and there-
fore the executable specification — was completely stable. Both
activities fed changes back into the Haskell prototype, but they did
not supersede it. The Haskell prototype remained the central refer-
ence model throughout the duration of the project.

2. Executable and Abstract Specification

Microkernels in the L4 family share a number of basic design prin-
ciples, set out by Liedtke (1995). They provide only the abstrac-
tions that are essential for performance or security — primarily vir-
tual memory, threads, and inter-process communication. They are
designed with an emphasis on IPC performance, which is critical to
the overall performance of microkernel-based systems. They have,
historically, provided only minimal support for managing kernel
resources and for controlling access to communication.

The seL4 project set out to design a new microkernel based
on the same basic principles, but taking a new approach with
capability-based resource management and access control. Since
this entailed designing a new API that was significantly different
to that of previous L4 kernels, there was a large design space to
explore.

We decided, at the outset, that implementing a new kernel in
C from scratch when the design was still uncertain was a risky
proposition; much time would be wasted on rewrites and low-level,
hardware-dependent debugging before a final design emerged. On
the other hand, designing a kernel formally on paper before imple-
menting it might result in an API with limited application to real-
world use. We wanted to be able to execute user-level programs to
test our proposed designs. Also, since we intended to formally ver-
ify safety properties of the kernel (Tuch et al. 2005), we desired a
precise specification with well-defined semantics.

Thus, we developed an executable model of the design in
Haskell. This model was gradually developed into a complete pro-
totype, exploring various design alternatives in the process (see
Derrin et al. 2006). We were able to exercise user-level programs
on the binary level by attaching a processor and platform simula-
tion to the Haskell prototype. At the same time, we formalised the
Haskell prototype by translating it into Isabelle/HOL; the transla-
tion was initially performed by hand, but was later automated.

When, after a number of iterations, the kernel design in Haskell
had begun to stabilise, we constructed an abstract, operational spec-
ification with fewer data structure details, and with features like
scheduling underspecified so that different implementation choices
could be explored in later versions of the kernel. The abstract spec-
ification is meant to specify what the kernel does; the executable
specification gives details on how it is done. This initial abstract
formalisation process provided immediate feedback on correctness
and safety to the design team. The feedback increased when we
started the refinement proof between the two layers (see Sect. 4).

Isabelle/HOL is based on lambda calculus, and can be seen as
a functional programming language extended with logical opera-
tors. It is less expressive than Haskell in some ways: every function
must terminate, which limits use of laziness; type classes cannot
have multiple parameters, and there are no constructor type class,
so there is no built-in Monad typeclass, nor was there initially do-
syntax for lists of sequential operations. However, Isabelle’s syntax
is easily extensible, and we were able to define our own do-syntax
for the specific monads used by our abstract and executable mod-
els. Unsurprisingly, the Isabelle/HOL standard library is geared to-
wards theorem proving and felt therefore limited for implementing

a large-scale functional program. Again, this was easily extended.
We were able to implement all of the monad and list functions that
we used of the Haskell library in Isabelle.

Proving termination for every function was less difficult than we
anticipated — for primitive recursion and for functions with a sim-
ple lexicographic termination measure the proofs are straightfor-
ward and in many cases entirely automatic. However, we avoided
complex recursion patterns, such as nested mutual recursion, be-
cause they would have been more difficult to translate. This was
also desirable because the microkernel has to operate on strictly
limited and known stack depth, so recursion ultimately had to be
implemented by loops in C anyway.

We used only a constrained subset of Haskell that could be
translated to Isabelle/HOL. Besides forgoing the use of laziness in
any essential way, we made limited use of type classes in Haskell
(in particular using only three specific instances of MONAD m),
and avoided most GHC extensions.

The use of Haskell at this stage had two main effects on the ver-
ification component of the project. First, it removed the need to in-
terpret vague and inaccurate natural language design specifications,
user manuals, or incomprehensible optimised C code. Second, it
constrained the design team to a subset of Haskell that could be
handled by the automatic translation, leading them to instinctively
favour designs suitable for formal specification. Since extending
the subset had an obvious cost in terms of modifications to the
translator, there was a natural counter-force to increasing this sub-
set too much. The question How would we write this in Haskell?,
and therefore How can it be formalised?, was a topic in design team
discussions. In a normal kernel design process, it would not have
been.

3. High Performance C Implementation

The goals of the Haskell prototype were twofold: predictable be-
haviour to provide an easy path to formalisation, and enough detail
to provide an easy path to a C implementation.

The second requirement, especially, led to an imperative-style
Haskell program with extensive use of the StateT and ErrorT mon-
ads, including an explicit model of kernel memory addressed by
typed pointers. An explicit hardware interface made it easier to con-
nect the prototype to different simulators (M5, gemu, and our own
ARMVG instruction simulator). This interface also became the ma-
chine interface of the C kernel.

As performance tuning is essential for microkernels, we did not
attempt to generate C code from the model, but implemented the
kernel manually, following the structure of the executable specifi-
cation closely. The direct C implementation work was roughly 2
person months in effort, which is insignificant compared to the 20
person years spent on the complete project. The extremely rapid
manual implementation was possible thanks to the precise exe-
cutable specification. Not many implementation choices had to be
made, and the structure of the program was clearly laid out already.
D. Wheeler’s SLOCCount estimates that the effort for implement-
ing the kernel directly in C would have been 4 person years. The ef-
fort for designing, writing and documenting the Haskell prototype
was ca 2 person years. Based on this estimate, the use of Haskell
reduced the implementation effort by 50%.

In the first implementation pass, we did not pay any attention
to performance. The result of this initial pass was therefore unsur-
prisingly slow (on the order of the Mach microkernel), a factor of 3
slower than comparable operations in existing L4 kernels. After a
first round of manual optimisations, seL4 IPC performance is now
comparable to OKL4 2.1 (2008) on ARMV6.

Another consequence of using a functional language as the
design source was the structured use of tagged unions in the C
code. Verification of unstructured unions in C is unpleasant. Since

unions and structs were used in a principled way, we managed to
avoid this additional verification burden entirely. Moreover, we did
not trust the compiler to translate C bitfields correctly and with
the fine-grained control we required; instead, we generated the C
code for these structures and tagged unions automatically from a
separate specification language (Cock 2008). We also generated the
corresponding Isabelle/HOL proof of code correctness.

Our verification framework treats a large, true subset of C99.
The main restrictions are: we do not allow the address-of (&) op-
erator on local variables, because the stack is modelled separately
from the heap; we do not allow function pointers and goto state-
ments; we make some expressions such as x++ statement forms;
and we allow at most one side-effecting sub-expression in any as-
signment, because execution order is arbitrary otherwise. The func-
tion pointer prohibition implies that we did not make heavy use of
higher-order functions in Haskell apart from some specific func-
tions that are used to emulate C control structures such as mapM_,
zipWithM, catchError, and so on. This prohibition could be lifted
fairly easily from the C translation, but we found it advantageous to
strive for simplicity over features when possible in our Hoare logic
framework for C.

We translate C types precisely into Isabelle/HOL, including
pointers, address arithmetic, finite integers, structs, and padding in
structs (Tuch et al. 2007). Our target architecture is ARMv6; the
compiler is GCC 4.2.2. Strictly speaking, Fig. 1 is inaccurate in
that we do not reason on C directly, but on a translation of C into
Isabelle/HOL. In contrast to the Haskell/Isabelle translation, this is
a comparatively small translation step, with explicit care taken to
map the semantics of C precisely into the theorem prover.

Although our experience was in general favourable, efficient
kernel code does not always translate well from Haskell. For ex-
ample, the executable model’s error handling code contains a func-
tion that loads a message into a user-level context (setMRs), which
is applied to the results of one of several functions that generate
messages (as lists of machine words) from various error types.
Translating this directly to C leads to implicit allocation of memory
to temporarily hold the message, and double copying of the mes-
sage’s contents; in order to keep the C code efficient, we manually
unfolded the definition of sezMRs and fused it with the message
generation functions before translating. More generally, we found
that Haskell at times encouraged coding practices that are ineffi-
cient in our subset of C if translated naively: passing large struc-
tures as function arguments, throwing and catching exceptions for
error handling, and function composition that depends on laziness
to be efficient.

An interesting observation on the C implementation was that
the C program was in parts less verbose than the explicit mem-
ory model we used in Haskell, because load-check-modify-store
idioms are simply written as pointer accesses and updates in C. The
more verbose style for this part in Haskell did not hinder verifica-
tion. On the contrary, pointers made up a large part of the hidden
complexity of the C program that was dealt with explicitly in the
executable and abstract models. The additional verbosity was local
only. In total, the Haskell prototype comes to 5,700 LOC compared
to 8,700 LOC in C (numbers according to SLOCCount).

To summarise, we restricted our use of Haskell to a suitable
subset and were able to manually implement a high-performance C
version of the kernel in very little time. The Haskell and C versions
have almost identical data and code structures. We exploited this
fact heavily in the verification.

4. Formal Verification

As mentioned in the introduction, the formal verification of sel.4
consisted of two major refinement steps: between abstract and
executable specification, and between executable specification and

implementation. Our embedding of Haskell into Isabelle is shallow,
the embedding of C into Isabelle is deep for statements and shallow
for expressions.

The main statement we proved in each of the two steps is formal
refinement, reduced to forward simulation: if the initial states are in
a system-global state relation R, and the concrete level takes one
step, then the abstract level must be able to take a corresponding
step such that the resulting states again are in the relation R. Cock
et al. (2008) extend this classic notion to state monads, integrating
the aspects of failure, non-determinism and exceptions needed in
the kernel specifications. The notion implies, and we have proved
in Isabelle/HOL, that all Hoare triples that are true on the abstract
level are also true on the concrete level, modulo the state relation
R.

4.1 First Refinement Step

Refinement step one in the verification took ca 8 person years in
total and manually produced 117,000 lines of Isabelle/HOL proof
script. This step contains the conceptually interesting part of the
proof, reasoning about the design aspects of execution safety and
correctness. We cannot go into the details of this proof here for
space reasons, but the simpler and higher-level data structures of
the abstract specification require invariants on their more detailed
counterparts on the executable level to show correspondence. Basic
preconditions of the correspondence proof are that each operation
is well defined, that memory accesses are correctly typed, that as-
sertions do not fail, that objects that are read from do exist, and
that partially defined functions (e.g. those with incomplete patterns
in Haskell) are used only within their domain. These preconditions
for safe execution spawned a number of complex invariants on how
the kernel works, how it explicitly re-uses memory, and how it pre-
vents dangling references to deleted objects in any part of the kernel
(including all of memory). Reasoning on this level included explicit
decoding of binary system call arguments read from user registers
and full argument checking to ensure safe operation for any kernel
input, be it benign, maliciously crafted, or simply garbage.

The effect our use of Haskell had on this proof can be sum-
marised as: the ability to exploit structural similarities, an increased
use of library functions, initial increased technical friction in work-
ing with generated definitions, and different proof style. We explain
each of these in more detail in the following paragraphs.

The Haskell prototype existed first, and therefore the abstract
specification was inspired by it in structure. We were able to exploit
this structural similarity to make the proof easier. Being inspired
by the executable level also means that our abstract specification is
probably more concrete than it may have been without this input. A
higher-level abstract specification would have meant more distance
for the refinement proof to the executable level, but possibly less
distance to further layers above. For showing specific properties
of the kernel that turn out to be too complex for the complete
abstract operational specification, we would add a further, more
abstract layer to the stack that is specialised to the property under
consideration, such as we are currently exploring with the abstract
access control model of sel.4 (Elkaduwe et al. 2008).

Haskell being a fully-featured programming language led the
design team to make more extensive use of library functions like
mapM and zipWithM than they otherwise may have. At the time,
there were no Isabelle versions of these functions. Introducing them
saved verification work because we avoided repeating proofs over
many similar recursion patterns.

On the less positive side, we observed more technical friction
in the proofs that were concerned with definitions generated from
Haskell than in those that were written in Isabelle directly. This
was expected. Programming idioms did not always match up with
how rules were phrased in the Isabelle library. The executable

specification was generated Isabelle code that was not as concise
as the Haskell source, and not always nice to read. This turned out
to be an initial problem only. The new idioms became manageable
once the verification team were used to them, and had built up
a library of matching rules. The generated code could often be
rewritten trivially with associativity and other simple, general state-
monad laws to read more nicely.

Due to the monadic, imperative style of the Haskell prototype
and therefore the executable specification, the majority of the proof
took the form of Hoare triples, weakest precondition reasoning,
and correspondence calculus reasoning. Apart from the rewrites
mentioned above we used only little of the algebraic reasoning that
would usually be associated with verifying functional programs.
This proof structure is mainly an artefact of the application area
and of having C as a target implementation language. We did use
induction where recursion was involved in the Haskell program. In
C, these were replaced by loops.

This first proof lead to around 200 changes in the Haskell
prototype and 300 changes in the abstract specification. Less than
half of these were genuine bugs or design defects. Most changes
were for proof convenience: reshuffling functions to match up more
closely, adding assertions to transport information across levels,
and adding local checks or re-arranging code to make properties
more obviously true. The majority of the bugs we found during
verification were mundane: simple typos and some copy & paste
errors. We did also find more subtle problems in the initial design
like missing argument checking, potential security violations etc.
Of course, it does not matter if the defect is mundane or not: the
kernel will happily crash or allow a security attack either way. It
is interesting to note that the actual discovery of defects does not
necessarily occur when they leap from the screen in the form of a
counter example or unprovable lemma (although that did happen).
Instead, many defects were found when new invariants became
necessary and the verification and design teams discussed what
these should be, whether they would hold, and, if so, why. One
answer a verification team should be wary of is this is never done
anywhere in the kernel. This answer usually means proving a new
fact about the whole kernel instead of quick local reasoning.

It is not clear if the use of Haskell would have been beneficial in
just the proof of the first refinement step in isolation. Nicer, more
elegant reasoning might have been possible in a more abstract, still
executable setting with definitions written directly in Isabelle/HOL.
The detailed executable model, and its use as a prototype running
user binaries, injected a sometimes unpleasant dose of realism into
the proof — forcing us to consider implementation details that are
necessary for an efficient kernel, rather than one that simply func-
tions correctly. For example, one part of the first refinement proof
that was particularly challenging was the relation between the ab-
stract and executable models’ versions of the capability derivation
tree. This is one of the two main metadata structures in the seL4
implementation; it is conceptually a forest of directed trees, and is
represented in the abstract model by simple functions that encode
a binary relation between pointers to the nodes. The executable
model represents it the way a real kernel implementation would:
as a set of doubly linked lists, each corresponding to a pre-order
traversal of a tree. The depth information is implicitly encoded in
the nodes, and is available only by comparing two nodes; the depth
comparison function requires that its arguments are in the stored or-
der. Furthermore, the lists are not represented by Haskell’s standard
list type, but by pairs of pointers stored in separate node objects in
the modelled physical memory — as they would be in C. Naturally,
the invariants that must be maintained by operations on these struc-
tures are complex, and therefore so is the refinement proof for those
operations.

This realism paid off in the second refinement step.

4.2 Second Refinement Step

One important observation about the first refinement step is that we
spent roughly 80% of the proof effort on showing invariants of the
abstract and executable levels and only 20% on the correspondence
itself. The invariants were necessary preconditions for the corre-
spondence, but they also carry a large amount of information on
how precisely the kernel works and why its internal data structures
are safe to use.

Because the Haskell and C implementations share almost iden-
tical data and code structures, we were able to avoid these 80% for
the second step. The important invariants had already been proved
on the executable specification level, and no complex semantic rea-
soning was necessary on the C level. The most complex new rela-
tionships we had to show on the C level were the implementation of
Haskell or Isabelle lists as doubly linked lists, some of which were
encoded in existing data structures. The C verification did lead us
to prove new invariants on the level of the executable specification,
but far fewer than we needed in the first step. They were mainly
due to optimisations in C that made use of conditions known to be
true over kernel execution.

The main challenges in the second step were dealing with C lan-
guage semantics and data structure encodings, but without complex
data refinement. Having to prove at the same time that the C code
maintains complex invariants as we had shown in step one would
have made this proof much harder. At the time of writing, the proof
on the C level is completed for 474 functions out of 518 and we
have so far spent 26 person months on this part of the verification.
The speed of verification on this level was 3—4 functions per person
per week with 3-5 persons working on this body of proofs concur-
rently.

Even though the kernel implementation had in the meantime
been used in a number of small student projects, had been ported to
the x86 architecture, and had been run through static analysis tools,
we still found 97 defects in C during the verification. We had not
attempted to test the implementation in great detail, because for-
mal verification was scheduled anyway. For each of the defects we
could have found a test case that demonstrated it, but of course the
question is whether we would have thought of these beforehand.
Unsurprisingly, the defects were concentrated in parts of the kernel
that were less used in the student projects and that were compli-
cated to use. Most of them were simple translation errors and typos
in the implementation step from Haskell to C, fewer were defects in
new data encodings and optimisation. We also observed compiler
specific errors: for instance, some functions that we had annotated
with GCC’s pure and const attributes to enable optimisations were
not in fact pure or const. The compiler did not check the attributes,
and neither did we initially in the verification. This lead to unex-
pected execution behaviour in otherwise already verified code. We
have updated the verification framework in the meantime to include
such compiler hints and make them proof obligations. The pure and
const attributes are now checked automatically.

As in the first refinement step, it was crucial for the verification
that we were able to change the C code as well as the Haskell source
for proof convenience instead of having to prove complex reorder-
ing theorems. For some optimisations, we changed the observable
behaviour of both the abstract and the executable specifications. For
instance, we changed the order in which data was stored in global
data structures, or the order in which arguments were checked (and
therefore which error messages would be reported first).

In summary, the verification of seL4 proceeded in two main
steps. Step one dealt with mostly semantic content in a shallow
embedding; step two was more syntactic and dealt with C, its
memory model and specific optimisations. We were able to avoid a
large part of the proof in the second step, because of the structural
similarity between the C and the Haskell implementations.

5. Conclusion

We have presented our experience in using Haskell in the verifica-
tion of the sel.4 microkernel. The aspects of the verification that
are specific to this project are its size, the implementation level it
descends to, and its iterative development cycle. As there is not
sufficient space to survey related work in this article we refer to the
comprehensive overview by Klein (2009).

We consider it important for the success of this project that the
kernel was designed by a team with an OS background, not by
the verification team. The verification team believes it would have
designed a much more elegant, but much more useless microkernel.
The connection between the two teams was the Haskell prototype.
All of the verification and implementation activities fed back into
this central reference specification of the project.

We could have created the executable specification in Isabelle
directly, but that would have left the design team out of the loop.
We could also have chosen another functional language, such as
ML, rather than Haskell; the primary motivation for our choice
was the local availability of experienced Haskell programmers at
UNSW, where Haskell is used in several research projects and was
used as the introductory undergraduate programming language at
the time. In addition, we consider the extensive tool-chain support
for Haskell (compiler, foreign function interface, literate Haskell)
an important contributor to the success of the Haskell source as a
simultaneous binary-compatible prototype, design document, and
formal executable specification. The part of the OS team that ac-
tively wrote the Haskell code had previous experience with Haskell.
The part of the OS team that did not have extensive experience with
Haskell was comfortable with the new language after less than one
month.

The culture shock between the Formal Methods and Operating
Systems groups was smaller than expected and greatly alleviated
by team members who had gone through advanced courses in both
areas.

Will this approach work for everything? We believe that for
high assurance on the level of kernel and systems code where
performance and hardware interaction are important, the approach
will work well. On the application level, it might be sufficient to
stop at the level of an executable specification, possibly in Haskell
or ML, if the compiler, runtime, and translation into Isabelle can be
trusted.

Acknowledgments

We thank Timothy Bourke, Michael Norrish, and Thomas Sewell
for reading and discussing drafts of this article.

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.

References

D. Cock. Bitfields and tagged unions in C: Verification through automatic
generation. In B. Beckert and G. Klein, editors, Proceedings of the 5th
International Verification Workshop (VERIFY’08), volume 372 of CEUR
Workshop Proceedings, pages 44-55, Sydney, Australia, Aug 2008.

D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads
and scalable refinement. In O. A. Mohamed, C. Mufioz, and S. Tahar,
editors, 21/st TPHOLs, volume 5170 of LNCS, pages 167-182, Montreal,
Canada, Aug 2008. Springer.

P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty.
Running the manual: An approach to high-assurance microkernel devel-
opment. In ACM SIGPLAN Haskell WS, Portland, OR, USA, Sep 2006.

D. Elkaduwe, G. Klein, and K. Elphinstone. Verified protection model of
the seLL4 microkernel. In J. Woodcock and N. Shankar, editors, VSTTE
2008 — Verified Softw.: Theories, Tools & Experiments, volume 5295 of
LNCS, pages 99114, Toronto, Canada, 2008. Springer.

K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a
practical, verified kernel. In /7th HotOS, pages 117-122, 2007.

G. Klein. Operating system verification — an overview. Sadhana, 34(1):
27-69, Feb 2009.

J. Liedtke. On p-kernel construction. In /5th SOSP, pages 237-250, Copper
Mountain, CO, USA, Dec 1995.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Open Kernel Labs. OKL4 v2.1. http://www.ok-1labs.com, 2008.

H. Tuch, G. Klein, and G. Heiser. OS verification — now! In /0th HotOS,
pages 7-12, Santa Fe, NM, USA, Jun 2005. USENIX.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In
M. Hofmann and M. Felleisen, editors, 34th POPL, pages 97-108, 2007.

S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock, and M. Norrish.
Mind the gap: A verification framework for low-level C. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, Proc. 22nd International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’09),
volume 5674 of LNCS. Springer, 2009. To appear.

